m at h . A G ] 1 4 A pr 2 00 9 CONIC - CONNECTED MANIFOLDS

نویسندگان

  • PALTIN IONESCU
  • FRANCESCO RUSSO
چکیده

We study a particular class of rationally connected manifolds, X ⊂ P , such that two general points x, x′ ∈ X may be joined by a conic contained in X. We prove that these manifolds are Fano, with b2 6 2. Moreover, a precise classification is obtained for b2 = 2. Complete intersections of high dimension with respect to their multi-degree provide examples for the case b2 = 1. The proof of the classification result uses a general characterization of rationality, in terms of suitable covering families of rational curves. A Gaetano Scorza che un secolo fa aveva colto l’importanza delle varietà razionalmente connesse considerando la classe particolare di varietà conicamente connesse formata da quelle di ultima specie. ”Invece per le V4 di prima e terza specie arrivo a caratterizzarle tutte valendomi della teoria dei sistemi lineari sopra una varietà algebrica e, per le ultime, della circostanza che esse contengono un sistema ∞ di coniche cosı̀ che per ogni loro coppia di punti passa una e una sola conica. Inoltre la natura dei ragionamenti è tale da mostrare come i risultati ottenuti possano estendersi, almeno per la maggior parte, alle varietà (di prima e ultima specie) a un numero qualunque di dimensioni, ...”, [Sc2, Opere Scelte, vol. 1, p. 253].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 07 01 88 5 v 2 [ m at h . A G ] 9 M ar 2 00 8 CONIC - CONNECTED MANIFOLDS

We study a particular class of rationally connected manifolds, X ⊂ P , such that two general points x, x′ ∈ X may be joined by a conic contained in X. We prove that these manifolds are Fano, with b2 6 2. Moreover, a precise classification is obtained for b2 = 2. Complete intersections of high dimension with respect to their multi-degree provide examples for the case b2 = 1. The proof of the cla...

متن کامل

ar X iv : m at h / 06 10 28 4 v 1 [ m at h . SG ] 9 O ct 2 00 6 A UNIQUE DECOMPOSITION THEOREM FOR TIGHT CONTACT 3 - MANIFOLDS

It has been shown by V. Colin that every tight contact 3-manifold can be written as a connected sum of prime manifolds. Here we prove that the summands in this decomposition are unique up to order and contactomor-phism.

متن کامل

ar X iv : m at h / 05 04 08 2 v 4 [ m at h . D G ] 1 5 A pr 2 00 6 COMPLETE PROJECTIVE CONNECTIONS

The first examples of complete projective connections are uncovered: on surfaces, normal projective connections whose geodesics are all closed and embedded are complete. On manifolds of any dimension, normal projective connections induced from complete affine connections with slowly decaying positive Ricci curvature are complete.

متن کامل

ar X iv : m at h / 04 02 28 2 v 2 [ m at h . D G ] 5 A pr 2 00 4 COMPLETE CURVATURE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS

We exhibit 3 families of complete curvature homogeneous pseudo-Riemannian manifolds which are modeled on irreducible symmetric spaces and which are not locally homogeneous. All of the manifolds have nilpotent Jacobi operators; some of the manifolds are, in addition, Jordan Osserman and Jordan Ivanov-Petrova.

متن کامل

ar X iv : m at h / 07 01 88 5 v 1 [ m at h . A G ] 3 0 Ja n 20 07 CONIC - CONNECTED MANIFOLDS

We study a particular class of rationally connected manifolds, X ⊂ P , such that two general points x, x′ ∈ X may be joined by a conic contained in X. We prove that these manifolds are Fano, with b2 6 2. Moreover, a precise classification is obtained for b2 = 2. Complete intersections of high dimension with respect to their multi-degree provide examples for the case b2 = 1. The proof of the cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009